holoviews.plotting.plotly.stats module#
- class holoviews.plotting.plotly.stats.BivariatePlot(element, plot=None, **params)[source]#
Bases:
ChartPlot
,ColorbarPlot
Parameter Definitions
Parameters inherited from:
holoviews.plotting.plot.DimensionedPlot
: fontsize, fontscale, show_title, title, normalize, projectionholoviews.plotting.plot.GenericElementPlot
: apply_ranges, apply_extents, default_span, hooks, padding, show_grid, xlabel, ylabel, xlim, ylim, zlim, xrotation, yrotationholoviews.plotting.plotly.plot.PlotlyPlot
: width, heightholoviews.plotting.plotly.element.ElementPlot
: bgcolor, invert_axes, invert_xaxis, invert_yaxis, logx, logy, show_legend, xaxis, yaxis, xticks, yticks, aspect, invert_zaxis, labelled, logz, margins, responsive, zlabel, zticksholoviews.plotting.plotly.element.ColorbarPlot
: clim, clim_percentile, colorbar, color_levels, colorbar_opts, symmetricfilled = Boolean(default=False, label='Filled')
ncontours = Integer(allow_None=True, inclusive_bounds=(True, True), label='Ncontours')
- class holoviews.plotting.plotly.stats.BoxWhiskerPlot(element, plot=None, **params)[source]#
Bases:
MultiDistributionPlot
Parameter Definitions
Parameters inherited from:
holoviews.plotting.plot.DimensionedPlot
: fontsize, fontscale, show_title, title, normalize, projectionholoviews.plotting.plot.GenericElementPlot
: apply_ranges, apply_extents, default_span, hooks, padding, show_grid, xlabel, ylabel, xlim, ylim, zlim, xrotation, yrotationholoviews.plotting.plotly.plot.PlotlyPlot
: width, heightholoviews.plotting.plotly.element.ElementPlot
: bgcolor, invert_axes, invert_xaxis, invert_yaxis, logx, logy, show_legend, xaxis, yaxis, xticks, yticks, aspect, invert_zaxis, labelled, logz, margins, responsive, zlabel, zticksboxpoints = Selector(default='outliers', label='Boxpoints', names={}, objects=['all', 'outliers', 'suspectedoutliers', False])
Which points to show, valid options are ‘all’, ‘outliers’, ‘suspectedoutliers’ and False
jitter = Number(default=0, inclusive_bounds=(True, True), label='Jitter')
Sets the amount of jitter in the sample points drawn. If “0”, the sample points align along the distribution axis. If “1”, the sample points are drawn in a random jitter of width equal to the width of the box(es).
mean = Selector(default=False, label='Mean', names={}, objects=[True, False, 'sd'])
If “True”, the mean of the box(es)’ underlying distribution is drawn as a dashed line inside the box(es). If “sd” the standard deviation is also drawn.
- class holoviews.plotting.plotly.stats.DistributionPlot(element, plot=None, **params)[source]#
Bases:
ElementPlot
Parameter Definitions
Parameters inherited from:
holoviews.plotting.plot.DimensionedPlot
: fontsize, fontscale, show_title, title, normalize, projectionholoviews.plotting.plot.GenericElementPlot
: apply_ranges, apply_extents, default_span, hooks, padding, show_grid, xlabel, ylabel, xlim, ylim, zlim, xrotation, yrotationholoviews.plotting.plotly.plot.PlotlyPlot
: width, heightholoviews.plotting.plotly.element.ElementPlot
: bgcolor, invert_axes, invert_xaxis, invert_yaxis, logx, logy, show_legend, xaxis, yaxis, xticks, yticks, aspect, invert_zaxis, labelled, logz, margins, responsive, zlabel, zticksbandwidth = Number(allow_None=True, inclusive_bounds=(True, True), label='Bandwidth')
The bandwidth of the kernel for the density estimate.
cut = Number(default=3, inclusive_bounds=(True, True), label='Cut')
Draw the estimate to cut * bw from the extreme data points.
filled = Boolean(default=True, label='Filled')
Whether the bivariate contours should be filled.
- class holoviews.plotting.plotly.stats.MultiDistributionPlot(element, plot=None, **params)[source]#
Bases:
MultiDistributionMixin
,ElementPlot
Parameter Definitions
Parameters inherited from:
holoviews.plotting.plot.DimensionedPlot
: fontsize, fontscale, show_title, title, normalize, projectionholoviews.plotting.plot.GenericElementPlot
: apply_ranges, apply_extents, default_span, hooks, padding, show_grid, xlabel, ylabel, xlim, ylim, zlim, xrotation, yrotationholoviews.plotting.plotly.plot.PlotlyPlot
: width, heightholoviews.plotting.plotly.element.ElementPlot
: bgcolor, invert_axes, invert_xaxis, invert_yaxis, logx, logy, show_legend, xaxis, yaxis, xticks, yticks, aspect, invert_zaxis, labelled, logz, margins, responsive, zlabel, zticks
- class holoviews.plotting.plotly.stats.ViolinPlot(element, plot=None, **params)[source]#
Bases:
MultiDistributionPlot
Parameter Definitions
Parameters inherited from:
holoviews.plotting.plot.DimensionedPlot
: fontsize, fontscale, show_title, title, normalize, projectionholoviews.plotting.plot.GenericElementPlot
: apply_ranges, apply_extents, default_span, hooks, padding, show_grid, xlabel, ylabel, xlim, ylim, zlim, xrotation, yrotationholoviews.plotting.plotly.plot.PlotlyPlot
: width, heightholoviews.plotting.plotly.element.ElementPlot
: bgcolor, invert_axes, invert_xaxis, invert_yaxis, logx, logy, show_legend, xaxis, yaxis, xticks, yticks, aspect, invert_zaxis, labelled, logz, margins, responsive, zlabel, zticksbox = Boolean(default=True, label='Box')
Whether to draw a boxplot inside the violin
meanline = Boolean(default=False, label='Meanline')
If “True”, the mean of the box(es)’ underlying distribution is drawn as a dashed line inside the box(es). If “sd” the standard deviation is also drawn.