holoviews.core.data.interface module#
- exception holoviews.core.data.interface.DataError(msg, interface=None)[source]#
Bases:
ValueError
DataError is raised when the data cannot be interpreted
- class holoviews.core.data.interface.Interface(*, name)[source]#
Bases:
Parameterized
Parameter Definitions
- classmethod applies(obj)[source]#
Indicates whether the interface is designed specifically to handle the supplied object’s type. By default simply checks if the object is one of the types declared on the class, however if the type is expensive to import at load time the method may be overridden.
- classmethod as_dframe(dataset)[source]#
Returns the data of a Dataset as a dataframe avoiding copying if it already a dataframe type.
- classmethod cast(datasets, datatype=None, cast_type=None)[source]#
Given a list of Dataset objects, cast them to the specified datatype (by default the format matching the current interface) with the given cast_type (if specified).
- classmethod concatenate(datasets, datatype=None, new_type=None)[source]#
Utility function to concatenate an NdMapping of Dataset objects.
- classmethod indexed(dataset, selection)[source]#
Given a Dataset object and selection to be applied returns boolean to indicate whether a scalar value has been indexed.
- class holoviews.core.data.interface.iloc(dataset)[source]#
Bases:
Accessor
iloc is small wrapper object that allows row, column based indexing into a Dataset using the
.iloc
property. It supports the usual numpy and pandas iloc indexing semantics including integer indices, slices, lists and arrays of values. For more information see theDataset.iloc
property docstring.
- class holoviews.core.data.interface.ndloc(dataset)[source]#
Bases:
Accessor
ndloc is a small wrapper object that allows ndarray-like indexing for gridded Datasets using the
.ndloc
property. It supports the standard NumPy ndarray indexing semantics including integer indices, slices, lists and arrays of values. For more information see theDataset.ndloc
property docstring.