holoviews.core.data.dictionary module#
- class holoviews.core.data.dictionary.DictInterface(*, name)[source]#
Bases:
InterfaceInterface for simple dictionary-based dataset format. The dictionary keys correspond to the column (i.e. dimension) names and the values are collections representing the values in that column.
Methods
add_dimension(dataset, dimension, dim_pos, ...)Returns a copy of the data with the dimension values added.
array(dataset, dimensions)Returns the data as a numpy.ndarray containing the selected dimensions.
assign(dataset, new_data)Adds a dictionary containing data for multiple new dimensions to a copy of the dataset.data.
has_holes(dataset)Whether the Dataset contains geometries with holes.
holes(dataset)Returns a list of lists of arrays containing the holes for each geometry in the Dataset.
iloc(dataset, index)Implements integer indexing on the rows and columns of the data.
isscalar(dataset, dim)Whether the selected dimension is a scalar value.
length(dataset)Returns the number of rows in the Dataset.
range(dataset, dimension)Computes the minimum and maximum value along a dimension.
redim(dataset, dimensions)Renames dimensions in the data.
reindex(dataset, kdims, vdims)Reindexes data given new key and value dimensions.
shape(dataset)Returns the shape of the data.
unpack_scalar(dataset, data)Given a dataset object and data in the appropriate format for the interface, return a simple scalar.
validate(dataset[, vdims])Validation runs after the Dataset has been constructed and should validate that the Dataset is correctly formed and contains all declared dimensions.
values(dataset, dim[, expanded, flat, ...])Returns the values along a dimension of the dataset.
aggregate
concat
dimension_type
geom_type
groupby
init
mask
sample
select
sort
Parameter Definitions
- classmethod add_dimension(dataset, dimension, dim_pos, values, vdim)[source]#
Returns a copy of the data with the dimension values added.
- Parameters:
- dataset
Dataset The Dataset to add the dimension to
- dimension
Dimension The dimension to add
- dim_pos
int The position in the data to add it to
- valuesarray_like
The array of values to add
- vdimbool
Whether the data is a value dimension
- dataset
- Returns:
dataA copy of the data with the new dimension
- classmethod array(dataset, dimensions)[source]#
Returns the data as a numpy.ndarray containing the selected dimensions.
- Parameters:
- Returns:
np.ndarrayA Numpy ndarray containing the selected dimensions
- classmethod assign(dataset, new_data)[source]#
Adds a dictionary containing data for multiple new dimensions to a copy of the dataset.data.
- Parameters:
- dataset
Dataset The Dataset to add the dimension to
- new_data
dict Dictionary containing new data to add to the Dataset
- dataset
- Returns:
dataA copy of the data with the new data dimensions added
- classmethod has_holes(dataset)[source]#
Whether the Dataset contains geometries with holes.
- Parameters:
- dataset
Dataset The dataset to check
- dataset
- Returns:
- bool
Whether the Dataset contains geometries with holes
Notes
Only meaningful to implement on Interfaces that support geometry data.
- classmethod holes(dataset)[source]#
Returns a list of lists of arrays containing the holes for each geometry in the Dataset.
- Parameters:
- dataset
Dataset The dataset to extract holes from
- dataset
- Returns:
list[list[np.ndarray]]List of list of arrays representing geometry holes
Notes
Only meaningful to implement on Interfaces that support geometry data.
- classmethod iloc(dataset, index)[source]#
Implements integer indexing on the rows and columns of the data.
- Parameters:
- Returns:
dataIndexed data
Notes
Only implement for tabular interfaces.
- classmethod length(dataset)[source]#
Returns the number of rows in the Dataset.
- Parameters:
- dataset
Dataset The dataset to get the length from
- dataset
- Returns:
intLength of the data
- classmethod range(dataset, dimension)[source]#
Computes the minimum and maximum value along a dimension.
- Parameters:
- dataset
Dataset The dataset to query
- dimension
strorDimension Dimension to compute the range on
- dataset
- Returns:
tuple[Any,Any]Tuple of (min, max) values
Notes
In the past categorical and string columns were handled by sorting the values and taking the first and last value. This behavior is deprecated and will be removed in 2.0. In future the range for these columns will be returned as (None, None).
- classmethod redim(dataset, dimensions)[source]#
Renames dimensions in the data.
- Parameters:
- Returns:
dataData after the dimension names have been transformed
Notes
Only meaningful for data formats that store dimension names.
- classmethod reindex(dataset, kdims, vdims)[source]#
Reindexes data given new key and value dimensions.
- classmethod unpack_scalar(dataset, data)[source]#
Given a dataset object and data in the appropriate format for the interface, return a simple scalar.
- classmethod validate(dataset, vdims=True)[source]#
Validation runs after the Dataset has been constructed and should validate that the Dataset is correctly formed and contains all declared dimensions.
- classmethod values(dataset, dim, expanded=True, flat=True, compute=True, keep_index=False)[source]#
Returns the values along a dimension of the dataset.
- Parameters:
- dataset
Dataset The dataset to query
- dimension
strorDimension Dimension to return the values for
- expandedbool,
defaultTrue When false returns unique values along the dimension
- flatbool,
defaultTrue Whether to flatten the array
- computebool,
defaultTrue Whether to load lazy data into memory as a NumPy array
- keep_indexbool,
defaultFalse Whether to return the data with an index (if present)
- dataset
- Returns:
- array_like
Dimension values in the requested format
Notes
The expanded keyword has different behavior for gridded interfaces where it determines whether 1D coordinates are expanded into a multi-dimensional array.