holoviews.core.data.cudf module#
- class holoviews.core.data.cudf.cuDFInterface(*, name)[source]#
Bases:
PandasInterfaceThe cuDFInterface allows a Dataset objects to wrap a cuDF DataFrame object. Using cuDF allows working with columnar data on a GPU. Most operations leave the data in GPU memory, however to plot the data it has to be loaded into memory.
The cuDFInterface covers almost the complete API exposed by the PandasInterface with two notable exceptions:
Aggregation and groupby do not have a consistent sort order (see rapidsai/cudf#4237)
Not all functions can be easily applied to a cuDF so some functions applied with aggregate and reduce will not work.
Methods
add_dimension(dataset, dimension, dim_pos, ...)Returns a copy of the data with the dimension values added.
applies(obj)Indicates whether the interface is designed specifically to handle the supplied object's type.
dframe(dataset, dimensions)Returns the data as a pandas.DataFrame containing the selected dimensions.
iloc(dataset, index)Implements integer indexing on the rows and columns of the data.
loaded()Indicates whether the required dependencies are loaded.
range(dataset, dimension)Computes the minimum and maximum value along a dimension.
select_mask(dataset, selection)Given a Dataset object and a dictionary with dimension keys and selection keys (i.e. tuple ranges, slices, sets, lists, or literals) return a boolean mask over the rows in the Dataset object that have been selected.
values(dataset, dim[, expanded, flat, ...])Returns the values along a dimension of the dataset.
aggregate
concat_fn
groupby
init
select
sort
Parameter Definitions
- classmethod add_dimension(dataset, dimension, dim_pos, values, vdim)[source]#
Returns a copy of the data with the dimension values added.
- Parameters:
- dataset
Dataset The Dataset to add the dimension to
- dimension
Dimension The dimension to add
- dim_pos
int The position in the data to add it to
- valuesarray_like
The array of values to add
- vdimbool
Whether the data is a value dimension
- dataset
- Returns:
dataA copy of the data with the new dimension
- classmethod applies(obj)[source]#
Indicates whether the interface is designed specifically to handle the supplied object’s type. By default simply checks if the object is one of the types declared on the class, however if the type is expensive to import at load time the method may be overridden.
- classmethod dframe(dataset, dimensions)[source]#
Returns the data as a pandas.DataFrame containing the selected dimensions.
- classmethod iloc(dataset, index)[source]#
Implements integer indexing on the rows and columns of the data.
- Parameters:
- Returns:
dataIndexed data
Notes
Only implement for tabular interfaces.
- classmethod range(dataset, dimension)[source]#
Computes the minimum and maximum value along a dimension.
- Parameters:
- dataset
Dataset The dataset to query
- dimension
strorDimension Dimension to compute the range on
- dataset
- Returns:
tuple[Any,Any]Tuple of (min, max) values
Notes
In the past categorical and string columns were handled by sorting the values and taking the first and last value. This behavior is deprecated and will be removed in 2.0. In future the range for these columns will be returned as (None, None).
- classmethod select_mask(dataset, selection)[source]#
Given a Dataset object and a dictionary with dimension keys and selection keys (i.e. tuple ranges, slices, sets, lists, or literals) return a boolean mask over the rows in the Dataset object that have been selected.
- classmethod values(dataset, dim, expanded=True, flat=True, compute=True, keep_index=False)[source]#
Returns the values along a dimension of the dataset.
- Parameters:
- dataset
Dataset The dataset to query
- dimension
strorDimension Dimension to return the values for
- expandedbool,
defaultTrue When false returns unique values along the dimension
- flatbool,
defaultTrue Whether to flatten the array
- computebool,
defaultTrue Whether to load lazy data into memory as a NumPy array
- keep_indexbool,
defaultFalse Whether to return the data with an index (if present)
- dataset
- Returns:
- array_like
Dimension values in the requested format
Notes
The expanded keyword has different behavior for gridded interfaces where it determines whether 1D coordinates are expanded into a multi-dimensional array.