holoviews.core.data.xarray module#
- class holoviews.core.data.xarray.XArrayInterface(*, name)[source]#
Bases:
GridInterfaceMethods
add_dimension(dataset, dimension, dim_pos, ...)Returns a copy of the data with the dimension values added.
applies(obj)Indicates whether the interface is designed specifically to handle the supplied object's type.
assign(dataset, new_data)Adds a dictionary containing data for multiple new dimensions to a copy of the dataset.data.
compute(dataset)Converts a lazy Dataset to a non-lazy, in-memory format.
coords(dataset, dimension[, ordered, ...])Returns the coordinates along a dimension.
dframe(dataset, dimensions)Returns the data as a pandas.DataFrame containing the selected dimensions.
dtype(dataset, dim)Returns the dtype for the selected dimension.
length(dataset)Returns the number of rows in the Dataset.
loaded()Indicates whether the required dependencies are loaded.
persist(dataset)Persists the data backing the Dataset in memory.
range(dataset, dimension)Computes the minimum and maximum value along a dimension.
redim(dataset, dimensions)Renames dimensions in the data.
reindex(dataset[, kdims, vdims])Reindexes data given new key and value dimensions.
sample(dataset[, samples])Samples the gridded data into dataset of samples.
shape(dataset[, gridded])Returns the shape of the data.
unpack_scalar(dataset, data)Given a dataset object and data in the appropriate format for the interface, return a simple scalar.
validate(dataset[, vdims])Validation runs after the Dataset has been constructed and should validate that the Dataset is correctly formed and contains all declared dimensions.
values(dataset, dim[, expanded, flat, ...])Returns the values along a dimension of the dataset.
aggregate
concat_dim
dimension_type
groupby
init
mask
ndloc
packed
select
sort
Parameter Definitions
- classmethod add_dimension(dataset, dimension, dim_pos, values, vdim)[source]#
Returns a copy of the data with the dimension values added.
- Parameters:
- dataset
Dataset The Dataset to add the dimension to
- dimension
Dimension The dimension to add
- dim_pos
int The position in the data to add it to
- valuesarray_like
The array of values to add
- vdimbool
Whether the data is a value dimension
- dataset
- Returns:
dataA copy of the data with the new dimension
- classmethod applies(obj)[source]#
Indicates whether the interface is designed specifically to handle the supplied object’s type. By default simply checks if the object is one of the types declared on the class, however if the type is expensive to import at load time the method may be overridden.
- classmethod assign(dataset, new_data)[source]#
Adds a dictionary containing data for multiple new dimensions to a copy of the dataset.data.
- Parameters:
- dataset
Dataset The Dataset to add the dimension to
- new_data
dict Dictionary containing new data to add to the Dataset
- dataset
- Returns:
dataA copy of the data with the new data dimensions added
- classmethod compute(dataset)[source]#
Converts a lazy Dataset to a non-lazy, in-memory format.
- Parameters:
- dataset
Dataset The dataset to compute
- dataset
- Returns:
DatasetDataset with non-lazy data
Notes
This is a no-op if the data is already non-lazy.
- classmethod coords(dataset, dimension, ordered=False, expanded=False, edges=False)[source]#
Returns the coordinates along a dimension. Ordered ensures coordinates are in ascending order and expanded creates ND-array matching the dimensionality of the dataset.
- classmethod dframe(dataset, dimensions)[source]#
Returns the data as a pandas.DataFrame containing the selected dimensions.
- classmethod dtype(dataset, dim)[source]#
Returns the dtype for the selected dimension.
- Parameters:
- dataset
Dataset The dataset to query
- dimension
strorDimension Dimension to return the dtype for
- dataset
- Returns:
numpy.dtypeThe dtype of the selected dimension
- classmethod length(dataset)[source]#
Returns the number of rows in the Dataset.
- Parameters:
- dataset
Dataset The dataset to get the length from
- dataset
- Returns:
intLength of the data
- classmethod persist(dataset)[source]#
Persists the data backing the Dataset in memory.
- Parameters:
- dataset
Dataset The dataset to persist
- dataset
- Returns:
DatasetDataset with the data persisted to memory
Notes
This is a no-op if the data is already in memory.
- classmethod range(dataset, dimension)[source]#
Computes the minimum and maximum value along a dimension.
- Parameters:
- dataset
Dataset The dataset to query
- dimension
strorDimension Dimension to compute the range on
- dataset
- Returns:
tuple[Any,Any]Tuple of (min, max) values
Notes
In the past categorical and string columns were handled by sorting the values and taking the first and last value. This behavior is deprecated and will be removed in 2.0. In future the range for these columns will be returned as (None, None).
- classmethod redim(dataset, dimensions)[source]#
Renames dimensions in the data.
- Parameters:
- Returns:
dataData after the dimension names have been transformed
Notes
Only meaningful for data formats that store dimension names.
- classmethod reindex(dataset, kdims=None, vdims=None)[source]#
Reindexes data given new key and value dimensions.
- classmethod sample(dataset, samples=None)[source]#
Samples the gridded data into dataset of samples.
- classmethod unpack_scalar(dataset, data)[source]#
Given a dataset object and data in the appropriate format for the interface, return a simple scalar.
- classmethod validate(dataset, vdims=True)[source]#
Validation runs after the Dataset has been constructed and should validate that the Dataset is correctly formed and contains all declared dimensions.
- classmethod values(dataset, dim, expanded=True, flat=True, compute=True, keep_index=False)[source]#
Returns the values along a dimension of the dataset.
- Parameters:
- dataset
Dataset The dataset to query
- dimension
strorDimension Dimension to return the values for
- expandedbool,
defaultTrue When false returns unique values along the dimension
- flatbool,
defaultTrue Whether to flatten the array
- computebool,
defaultTrue Whether to load lazy data into memory as a NumPy array
- keep_indexbool,
defaultFalse Whether to return the data with an index (if present)
- dataset
- Returns:
- array_like
Dimension values in the requested format
Notes
The expanded keyword has different behavior for gridded interfaces where it determines whether 1D coordinates are expanded into a multi-dimensional array.