Nyc Airport Connections#

Download this notebook from GitHub (right-click to download).

Most examples work across multiple plotting backends, this example is also available for:

import numpy as np
import networkx as nx
import holoviews as hv

from holoviews import dim, opts
from holoviews.element.graphs import layout_nodes
from bokeh.sampledata.airport_routes import routes, airports

hv.output(fig='svg', size=300)

Declare data#

# Create dataset indexed by AirportID and with additional value dimension
airports = hv.Dataset(airports, ['AirportID'], ['Name', 'IATA', 'City'])
source_airports = list('New York').data.AirportID)

# Add connections count to routes then aggregate and select just routes connecting to NYC
routes['connections'] = 1
nyc_graph = hv.Graph((routes, airports), ['SourceID', "DestinationID"], ['connections'], label='NYC Airport Connections')\

# Lay out graph weighting and weight by the number of connections
graph = layout_nodes(nyc_graph, layout=nx.layout.fruchterman_reingold_layout, kwargs={'weight': 'connections'})
labels = hv.Labels(graph.nodes, ['x', 'y'], ['IATA', 'City'])


nyc_labels ='New York').opts(
    color='white', yoffset=0.05, size=16)

other_labels = labels[labels['City']!='New York'].opts(
    color='white', size=8)

cmap = {3697: 'red', 3797: 'blue'}

(graph * nyc_labels * other_labels).opts(
        bgcolor='gray', xaxis=None, yaxis=None,
        edge_color=dim('SourceID').categorize(cmap, 'gray'),
        node_color=dim('index').categorize(cmap, 'gray'),
        title='NYC Airport Connections')
This web page was generated from a Jupyter notebook and not all interactivity will work on this website. Right click to download and run locally for full Python-backed interactivity.

Download this notebook from GitHub (right-click to download).